Using Anomalies to Forecast High Impact Events

David L. Beachler

NOAA/National Weather Service Forecast Office Chicago IL

Richard H. Grumm

NOAA/National Weather Service Forecast Office State College PA

Overview

R-Climate and meteorologically significant events

- Historic Events and value of R-Climate: many large scale and widespread events which affect thousands to tens of millions of people are events with a strong signal in the R-Climate verse the analysis of record and forecasts.
 - Key extreme event type examples → help in Decision Support Services (DSS)
 - Pattern with anomalies → SIGNIFICANCE
 - Probabilities and Pattern → CONFIDENCE
 - Standardized anomalies
 - Use with forecast guidance → forecast extreme events

- Examples Shown in standardized anomaly context
 - Heavy rainfall / Heavy snowfall
 - Mid-West/Great Lakes Heavy Rains: 17-19Apr2013
 - Western Great Lakes Flood: 17-23July2010

Leveraging Climate Data

- Quickly identify extremes
 - The tails of phase space or PDF
 - We will focus mainly showing standardized anomalies
- Quickly identify when conditions near normal
 - May miss mesoscale phenomena
 - Good to know this for you and decision makers
- The extremes are what feed into significant decisions
 - Need to know patterns with extreme events

Midwest/Great Lakes Flood: April2013

- Wet conditions first 16 days of April...likely set stage
- Anomalous downstream ridge produced deep moist plume into Mid-Mississippi Valley/Great Lakes
- Several areas received 50-100mm within 12 hrs
 - > 75-175mm within 36 hrs
- Pattern and Probs of heavy rainfall = Well Predicted!

500hPa hts

5520

850hPa V-wind

1000hPa PWAT

Init: 12Z13Apr2013

Valid: 06Z18Apr2013

Init:21Z15Apr2013

50

Init:21Z17Apr2013

GEFS 36hr Prob 50mm QPF Valid: 00Z-18Apr2013 – 12Z19Apr2013

Accumulated Precip (mm): 12Z17Apr2013-12Z20Apr2013 Stage-IV Data

Other Noteworthy Impacts...

- Record flooding on Illinois River caused barges to break free and damage a dam near Marseilles, IL
 - Illinois River peaked at 29.35' at Peoria (70yr record)

Western Great Lakes Flood: 21-23July2010

- Dominant Subtropical Ridge
 - Galarneau & Bosart 2006 coined "ridge rollers"
- Flooding aligned with Anomalous PWAT/Ridge
 - 23-24July2010: Heavy Rainfall (flooding) IA > 15"
 - Failure of Lake Delhi Dam (Eastern IA)

Composite: 17-26July2010

h.GFS 850 wind init:00Z23JUL2010 Valid:00Z23JUL2010

1.GFS 850 wind init:00Z24JUL2010 Valid:00Z24JUL2010

h.GFS 850 mflux init:00Z23JUL2010 Valid:00Z23JUL2010 i.GFS 850 mflux init:00Z24JUL2010 Valid:00Z24JUL2010

A Few Points

- Cherry picked, perhaps. Big signal is there
 - Daily and every 6-hour time step
 - Sometimes over periods of days and months
- But can leverage this
 - Know the patterns
 - Using the climate/model phase space to forecast extreme events.
- R-Climate and meteorologically significant events *
 - Focus on standardized anomalies (SA) here
 - Clearly shows signals for synoptic scale extreme events
- For Pattern people > learn the patterns and apply SA and the PDF to identify significant events where you forecast
 - Good for Situational Awareness and thus DSS

References

- Web resources: http://cms.met.psu.edu/sref/
 - SREF/GEFS options and Ensemble Threats Page
- Forsythe, J.M., S.Q. Kidder, S.J. Kusselson, A.S. Jones, T.H. Vonder Haar, 2009: Increasing the land coverage of blended multisensory total precipitable water products for weather analysis. 16th Conference on Satellite Meteorology and Oceanography, Phoenix, Arizona. http://ams.confex.com/ams/89annual/techprogram/paper149348.htm
- Hart, R. E., and R. H. Grumm, 2001: Using normalized climatological anomalies to rank synoptic scale events objectively. Mon. Wea. Rev., **129**, **2426–2442**.
- Junker, N. W., R. H. Grumm, R. Hart, L. F. Bosart, K. M. Bell, and F. J. Pereira, 2008: Use of standardized anomaly fields to anticipate extreme rainfall in the mountains of northern California. Wea. Forecasting, 23, 336–356.
- Kusselson, S.J., S.Q. Kidder, J.M. Forsythe, A.J Jones, L. Zhao, 2009: An update on the operational implementation
 of blended total precipitable water products. 23rd Conference on Hydrology, Phoenix, AZ.
 http://ams.confex.com/ams/89annual/techprogram/paper_142967.htm
- http://www.nws.noaa.gov/os/assessments/pdfs/Tenn_Flooding.pdf NWS Service Assessment Tennessee Flood
- THE USE OF ENSEMBLE AND ANOMALY DATA TO ANTICIPATE EXTREME FLOOD EVENTS IN THE NORTHEASTERN U.S.
 - Neil A. Stuart(1), Richard H. Grumm(2), John Cannon(3), and Walt Drag(4)